43 research outputs found

    Quest for hyperheavy toroidal nuclei

    Get PDF
    We investigate the possibility of observing toroidal breakup configurations in Au+Au collisions using the CHIMERA multidetector system. BUU simulations indicate that the threshold energy for toroidal configuration formation is around 23 MeV/nucleon. The simulations of the Decay process using the static model code ETNA indicate the sensitivity of some observables to different studied break-up geometries

    Deformation effects in 56^{56}Ni nuclei produced in 28^{28}Si+28^{28}Si at 112 MeV

    Full text link
    Velocity and energy spectra of the light charged particles (protons and α\alpha-particles) emitted in the 28^{28}Si(Elab_{lab} = 112 MeV) + 28^{28}Si reaction have been measured at the Strasbourg VIVITRON Tandem facility. The ICARE charged particle multidetector array was used to obtain exclusive spectra of the light particles in the angular range 15 - 150 degree and to determine the angular correlations of these particles with respect to the emission angles of the evaporation residues. The experimental data are analysed in the framework of the statistical model. The exclusive energy spectra of α\alpha-particles emitted from the 28^{28}Si + 28^{28}Si compound system are generally well reproduced by Monte Carlo calculations using spin-dependent level densities. This spin dependence approach suggests the onset of large deformations at high spin. A re-analysis of previous α\alpha-particle data from the 30^{30}Si + 30^{30}Si compound system, using the same spin-dependent parametrization, is also presented in the framework of a general discussion of the occurrence of large deformation effects in the ACN_{CN} ~ 60 mass region.Comment: 25 pages, 6 figure

    Correlation Functions for Diffusion-Limited Annihilation, A + A -> 0

    Full text link
    The full hierarchy of multiple-point correlation functions for diffusion-limited annihilation, A + A -> 0, is obtained analytically and explicitly, following the method of intervals. In the long time asymptotic limit, the correlation functions of annihilation are identical to those of coalescence, A + A -> A, despite differences between the two models in other statistical measures, such as the interparticle distribution function

    Fusion and Binary-Decay Mechanisms in the 35^{35}Cl+24^{24}Mg System at E/A \approx 8 MeV/Nucleon

    Full text link
    Compound-nucleus fusion and binary-reaction mechanisms have been investigated for the 35^{35}Cl+24^{24}Mg system at an incident beam energy of ELab_{Lab}= 282 MeV. Charge distributions, inclusive energy spectra, and angular distributions have been obtained for the evaporation residues and the binary fragments. Angle-integrated cross sections have been determined for evaporation residues from both the complete and incomplete fusion mechanisms. Energy spectra for binary fragment channels near to the entrance-channel mass partition are characterized by an inelastic contribution that is in addition to a fully energy damped component. The fully damped component which is observed in all the binary mass channels can be associated with decay times that are comparable to, or longer than the rotation period. The observed mass-dependent cross sections for the fully damped component are well reproduced by the fission transition-state model, suggesting a fusion followed by fission origin. The present data cannot, however, rule out the possibility that a long-lived orbiting mechanism accounts for part or all of this yield.Comment: 41 pages standard REVTeX file, 14 Figures available upon request -

    25 Years of Self-organized Criticality: Concepts and Controversies

    Get PDF
    Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attracted much comment, ranging from the very positive to the polemical. The other papers (Aschwanden et al. in Space Sci. Rev., 2014, this issue; McAteer et al. in Space Sci. Rev., 2015, this issue; Sharma et al. in Space Sci. Rev. 2015, in preparation) in this special issue showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities. This very broad impact, and the necessary process of adapting a scientific hypothesis to the conditions of a given physical system, has meant that SOC as studied in these fields has sometimes differed significantly from the definition originally given by its creators. In Bak’s own field of theoretical physics there are significant observational and theoretical open questions, even 25 years on (Pruessner 2012). One aim of the present review is to address the dichotomy between the great reception SOC has received in some areas, and its shortcomings, as they became manifest in the controversies it triggered. Our article tries to clear up what we think are misunderstandings of SOC in fields more remote from its origins in statistical mechanics, condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfeld’s original papers

    Two-stage description of charge distributions in

    No full text
    Spallation reactions are studied in the framework of a two-stage model. The intra-nuclear cascade (INC) stage of the reaction is simulated with the code ISABEL and a Constrained Molecular Dynamics (CoMD) code. The de-excitation of the highly excited pre-fragments is described with the multi-sequential binary decay code MECO, based on a generalized Weisskopf-Ewing formalism. Emission of nucleons, gamma rays and IMFs in their ground, excited bound and unbound states is considered. Calculated cross sections are compared with the experimental charge distributions of 56Fe + p spallation reaction products studied at GSI with the fragment separator FRS in the energy-range 0.3 − 1.5 GeV/A. At all bombarding energies, a good description of the experimental data is obtained with ISABEL-MECO using a global set of parameters. A preliminary calculation with CoMD-MECO at 1GeV/A is discussed

    Microscopic description of proton-induced spallation reactions with the constrained molecular dynamics (CoMD) model

    No full text
    We studied the complete dynamics of the proton-induced spallation process with the microscopic framework of the constrained molecular dynamics (CoMD) model. We performed calculations of proton-induced spallation reactions on 181Ta, 208Pb, and 238U targets with the CoMD model and compared the results with a standard two-step approach based on an intranuclear cascade model followed by a statistical deexcitation model. The calculations were also compared with recent experimental data from the literature. Our calculations showed agreement with some aspects of the experimental data and suggest further improvements in the models. We point out that this CoMD study represents the first complete dynamical description of spallation reactions with a microscopic N-body approach and may lead to advancements in the physics-based modeling of the spallation process. © 2019 IOP Publishing Ltd

    Stability criteria and fluctuations around nonequilibrium states

    No full text
    A stochastic formulation of the stability of, nonequilibrium states is discussed. An entropy balance equation, including the effect of both the macroscopic evolution and of the fluctuations is derived. In the linear region of thermodynamics Prigogine's minimum entropy production, theorem is extended to include the effect of fluctuations. The latter are shown to reïnforce the return of the system to its steady state distribution. © 1984 Springer-Verlag.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore